El Escorial, May 11th 2023

ESM

GUILLEM AROMI

UNIVERSITAT DE BARCELONA

10INa

European School on Molecular Nanoscience

Classical bit

Qubits Requirements

TWO QUANTUM LEVELS

SCALABILITY

LONG COHERENCE TIME

Qubits Realizations

Superconducting Circuits

Trapped lons

Science 2013, 339, 1169

Nature 2020, 587, 342

Science 2021, 373, 1436

Molecular Design of Spin-based Quantum Gates

2Qubit Quantum Gates

CNOT Gate

 $|11\rangle \leftrightarrow |10\rangle$ $|10\rangle \leftrightarrow |11\rangle$ $|01\rangle \rightarrow |01\rangle$ $|00\rangle \rightarrow |00\rangle$

2Qubit Quantum Gates

CNOT Gate

Mes

- $|11\rangle \leftrightarrow |10\rangle$ $|10\rangle \leftrightarrow |11\rangle$
- |01
 angle
 ightarrow |01
 angle
 - $|00\rangle \rightarrow |00\rangle$

Spin-based 2Qubit Quantum Gates

How Could we build a CNOT with Rare Earths?

•Two Inequivalent Ln's •Weakly Coupled •Axially Anisotropic

How Could we build a CNOT with Rare Earths?

Design Strategy: Dinuclear Asymmetric Lanthanide Complexes

Large Homometallic Series

 $2Ln(NO_3)_3 \cdot xH_2O + 3H_3L + 6py \longrightarrow$

 $(pyH)[Ln_2(HL)_3(NO_3)(py)(H_2O)] + (2x-1)H_2O + 5(pyH)NO_3$

Inorg. Chem. **2011**, *49*, 6784 *Chem. Eur. J.* **2013**, *19*, 5881

Molecular Prototypes for Spin-Based CNOT and SWAP Quantum Gates

Phys. Rev. Lett. 2011, 107, 117203.

. Pr

Če

La

Nd 🕅 Śm Eu Gd Tb Dy Ho Er Tm Yb Lu

Why is Site 2 larger than Site 1?

A Spin Based Quantum Gate with [CeEr]?

Qubits Characterization; [LaEr]

Qubit Characterization; [CeY]

Qubit Characterization; [LaEr] vs [CeY]

X Band EPR; $T \le 7 \text{ K}$

Realization of 2-Qubit Quantum Gates

J. Am. Chem. Soc. 2014, 136, 14215

Chem., Eur. J. 2019, 25, 15228

Pure Heterometallic LnLn'Ln clusters

[LuCeLu] [ErLaEr] [ErNdEr] [YbNdYb] [ErPrEr] [YbLaYb] [YbPrYb] [LuPrLu] [LuNdLu] [DyCeDy]

Chem., Eur. J. **2019**, 25, 15228 *Chem. Sci.*, **2020**, *11*, 10337 *Chem. Sci.*, **2022**, *13*, 5574

Metal Distribution in LnLn'Ln clusters

 $H_0 = \mu_B \sum_i \boldsymbol{S}_i \cdot \boldsymbol{g}_i \cdot \boldsymbol{B} + \boldsymbol{S}_{Er1} \boldsymbol{J}_{Er1Ce} \cdot \boldsymbol{S}_{Ce} + \boldsymbol{S}_{Ce} \cdot \boldsymbol{J}_{CeEr2} \boldsymbol{S}_{Er2} + \boldsymbol{S}_{Er1} \cdot \boldsymbol{J}_{Er1Er2} \boldsymbol{S}_{Er2}$ Chem. Sci., 2020, 11, 10337

Qubit and Switch Characterization

Chem. Sci., 2020, 11, 10337

Qubit and Ancillae Characterization

 $B(\mathbf{T})$

1

0

Chem. Sci., 2020, 11, 10337

Quantum Coherence and Coherent Control

Quantum Coherence (T_1 and T_M)

Chem. Sci., 2020, 11, 10337

GOAL: Doped [LnLn'Ln] qugates within a diamagnetic single crystal matrix of [LuLaLu]

Single Crystals of solution [ErPrEr]_{0.5}[YbNdYb]_{0.5}

MS of solution of "solid-solution" of [ErPrEr] + [YbNdYb]

CONCLUSIONS

1] Ligand Design Provides Entry into Heterometallic Ln complexes

2] Heterometallic [LnLn'] complexes are a versatile plataform for a wide number of 2-Qubit Qugate designs.
 A C-NOT and SWAP Qugate presented

 3] Heterometallic [LnLn'Ln] complexes provide possible realizations of 3-Qubit Qugates.
 -A Quantum Error Protection Device

